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Simple Summary: The study proposes an automated deep learning-based classification model,
based on a Convolutional Neural Network, that demonstrates a rapid detection rate for COVID-19.
The training dataset consists of 3616 COVID-19 chest X-ray images and 10,192 healthy chest X-ray
images which were then augmented. Initially using the dataset, the symptoms of COVID-19 were
detected by employing eleven existing CNN models. MobileNetV2 showed enough promise to make
it a candidate for further modification. The resulting model produced the highest accuracy of 98% in
classifying COVID-19 and healthy chest X-rays among all the implemented CNN models. The results
suggest that the proposed method can efficiently identify the symptoms of infection from chest X-ray
images better than existing methods.

Abstract: COVID-19, regarded as the deadliest virus of the 21st century, has claimed the lives of
millions of people around the globe in less than two years. Since the virus initially affects the lungs
of patients, X-ray imaging of the chest is helpful for effective diagnosis. Any method for automatic,
reliable, and accurate screening of COVID-19 infection would be beneficial for rapid detection and
reducing medical or healthcare professional exposure to the virus. In the past, Convolutional Neural
Networks (CNNs) proved to be quite successful in the classification of medical images. In this study,
an automatic deep learning classification method for detecting COVID-19 from chest X-ray images is
suggested using a CNN. A dataset consisting of 3616 COVID-19 chest X-ray images and 10,192 healthy
chest X-ray images was used. The original data were then augmented to increase the data sample
to 26,000 COVID-19 and 26,000 healthy X-ray images. The dataset was enhanced using histogram
equalization, spectrum, grays, cyan and normalized with NCLAHE before being applied to CNN
models. Initially using the dataset, the symptoms of COVID-19 were detected by employing eleven
existing CNN models; VGG16, VGG19, MobileNetV2, InceptionV3, NFNet, ResNet50, ResNet101,
DenseNet, EfficientNetB7, AlexNet, and GoogLeNet. From the models, MobileNetV2 was selected
for further modification to obtain a higher accuracy of COVID-19 detection. Performance evaluation
of the models was demonstrated using a confusion matrix. It was observed that the modified
MobileNetV2 model proposed in the study gave the highest accuracy of 98% in classifying COVID-19
and healthy chest X-rays among all the implemented CNN models. The second-best performance
was achieved from the pre-trained MobileNetV2 with an accuracy of 97%, followed by VGG19 and
ResNet101 with 95% accuracy for both the models. The study compares the compilation time of the
models. The proposed model required the least compilation time with 2 h, 50 min and 21 s. Finally,
the Wilcoxon signed-rank test was performed to test the statistical significance. The results suggest
that the proposed method can efficiently identify the symptoms of infection from chest X-ray images
better than existing methods.
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1. Introduction

The COVID-19 outbreak has risen to the status of one of the most severe public health
issues of the last several years. The virus spreads rapidly: the reproduction number of
COVID-19 varied from 2.24 to 3.58 during the initial months of the pandemic [1], indicating
that each infected individual on average transmitted the disease to two or more others.
Consequently, the number of COVID-19 infections grew up from a few hundred cases
(most of them in China) in January 2020 to more than 43 million cases in November 2020
disseminated across the world [2].

It’s believed that the coronavirus that causes COVID-19 is the same one that causes
SARS-COV2 and MERS (MERS) [3]. COVID-19 has a wide range of symptoms that appear
after an average incubation period of 5.2 days. Fever, dry cough, and tiredness are common
symptoms, while others include headache, hemoptysis, diarrhea, dyspnea, and lymphope-
nia [4,5]. In December 2019, the first human was infected with coronavirus (SARS-COV-2),
and it is mostly transmitted by droplets produced when infected people talk, cough, or
sneeze [6–11]. Because the droplets are too heavy to travel far, they can only be propagated
via direct contact [12]. Recent research estimates that the COVID-19 can survive up to 3 h
in the air, 4 h on copper, and 72 h on plastic and stainless steel, but the precise durations
are yet unknown. However, the general health research community is yet to agree on
answers to these issues, which are still under study. An infection with COVID-19 affects
the tissues of the lungs. Some affected people may not notice any symptoms in the early
stages, while fever and cough were the most common core symptoms for the majority of
patients. Other side effects include muscle pains, a sore throat, and a headache. Cough
medicine, pain killers, fever reducers, and antibiotics are provided to patients based on
their symptoms, not the disease organism. The patient must be hospitalized and treated in
an Intensive Care Unit (ICU), which may include the use of a ventilator to help the patient
breathe [13]. As a result of its severity and ease of transmission, COVID-19 has spread
rapidly across the world. The greater effect on health care departments is primarily due to
the number of individuals impacted day by day, as they need to give mechanical ventilators
to critically ill patients admitted to ICU. As a result, the number of ICU beds must be sig-
nificantly expanded. In the aforementioned scenario, early diagnosis is critical in ensuring
patients receive appropriate treatment, while reducing the load on the healthcare system.
COVID-19 is still a deadly disease due to the absence of early diagnostic techniques around
the world, as well as having medical preconditions such as cancer, chronic liver, lung,
and kidney diseases, and diabetes. Though RT-PCR diagnosis techniques are available
in most parts of the world, under-developed countries still cannot afford to test all their
people promptly [14]. In 2020–2021, this disease claimed the lives of millions of people
across the earth. Vaccines for COVID-19 are now being developed in a number of countries.
Vaccines produced by Pfizer, AstraZeneca, Moderna, Serum Institute of India Pvt. Ltd.,
Janssen, Sinopharm, Sinovac are among the vaccines that have been approved by WHO for
administration [15]. Such approved vaccines have substantially reduced the deadliness of
the disease.

Artificial intelligence has shown its efficiency and excellent performance in automated
image categorization issues via various machine learning methods and is currently being
used to automate the diagnosis of various diseases [16]. Furthermore, machine learning
refers to models that can learn and make decisions based on vast quantities of data samples.
Artificial intelligence accomplishes activities that need human intellect, such as voice
recognition, translation, visual perception, and more, by performing calculations and
predictions depending on the incoming data [17,18]. Deep learning is a collection of
machine learning techniques that primarily concentrate on the automated extraction and
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categorization of image features, and has shown tremendous promise in a variety of
applications, particularly in health care [19]. Scientists from around the world are trying to
develop technologies that can assist radiologists/doctors in their diagnoses. To identify
the optimal network for the area of radiology and medical image processing, a variety of
AI methods have been used so far [20,21]. Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs) are two prominent deep-learning-based networks that
have been extensively utilized in medical research fields like speech recognition, computer
vision, and Natural Language Processing (NLP), and have often produced commendable
results. The classification, localization, and segmentation of images using CNN have
shown impressive results in medical image processing [22–25].

This is a significant step forward in the identification of COVID-19 and other forms of
lung inflammation due to artificial intelligence (AI). The WHO recommends using RT-PCR
as the main diagnostic method for COVID-19 detection. Chest X-rays or chest CT scans are
also widely used, but should only be preferred when the RT-PCR test is not available in a
timely manner [14]. In most cases, it is seen that the nasal swap test results vary if done at
different times of the day. For instance, the possibility of getting a positive result is higher if
the test is done in the morning compared to a test done in the evening [26]. Furthermore, the
detection of COVID-19 positive patients was significantly delayed due to a high number of
false-negative results [27]. The RT-PCR has a low success rate of 70% [28] and a sensitivity
of 60–70% [29,30]. Moreover, the false-negative cases of RT-PCR show positive results on
chest X-ray imaging [31]. Due to its widespread availability, X-ray imaging has played
a significant role in many medical and epidemiological situations [32,33]. Because of
its operating speed, low cost, and ease of use for radiologists, chest X-ray seems to be
promising for emergency situations and therapy. A prior study, however, found significant
discrepancies in chest X-ray images obtained from patients who had COVID-19 [34].

The study proposed an intelligent deep learning architecture such as a modified Mo-
bileNetV2 with RMSprop optimizer to detect COVID-19 disease. For the study, 13,808 X-ray
image data were collected from the dataset and augmented to a larger dataset of 52,000 chest
X-ray images. Image processing methods such as enhancement, normalization, and data
augmentation were used to help the proposed model not only to avoid overfitting but
also to demonstrate the highest accuracy. The performance accuracy and compilation time
of the newly proposed methods are compared to those of eleven existing CNN models.
Finally, to access the statistical significance, a Wilcoxon signed-rank test was performed.

2. Literature Review

Artificial intelligence approaches have repeatedly given accurate and dependable
outcomes in applications that use image-based data. Using deep learning techniques,
researchers have been investigating and analyzing chest X-ray images to identify COVID-19
in recent years.

In [35], the images were normalized to extract enhanced features, which were then fed
into image classification algorithms utilizing deep learning techniques. Five cutting-edge
CNN systems, VGG19, MobileNetV2, Inception, Xception, and InceptionResNetV2, on a
transfer-learning scenario, were tested to detect COVID-19 from control and pneumonia
images. Experiments were conducted in two parts: one with 224 COVID-19 pictures,
700 bacterial pneumonia images, and 504 control images, and another with the prior
normal and COVID-19 data but 714 instances of bacterial and viral pneumonia. In the two-
and three-class classifications, the MobileNetV2 net had the greatest results, with 96.78%
and 94.72% accuracy, respectively.

In [36], both VGG16 CNN and Resnet50, which were trained on color camera images
from ImageNet, were utilized to perform transfer learning. To assess the feasibility of
utilizing chest X-rays to diagnose COVID-19, 10-fold cross-validation was performed to
obtain an overall accuracy of 89.2%.
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Three CNN architectures (ResNet50, InceptionV3, and InceptionRes-NetV2) were eval-
uated in relation to COVID-19 identification in [37], utilizing a database of just 50 controls
and 50 COVID-19 cases. ResNet50 achieved the highest accuracy of 98%.

In [38], a successful performance in diagnosis accuracy found in this research demon-
strates that deep CNNs could correctly and efficiently distinguish 21,152 normal and
abnormal chest radiographs. The CNN model pre-trained on datasets of adult patients and
fine-tuned on pediatric patients obtained an accuracy of 94.64%, a sensitivity of 96.5% and
a specificity of 92.86% for normal versus pneumonia categorization.

For transfer learning in [39], four CNN networks (ResNet18, ResNet50, SqueezeNet,
and DenseNet-121) were employed. Experiments were carried out using a database of
184 COVID-19 pictures as well as 5000 no findings and pneumonia images. According to
the reported findings, the sensitivity was about 98% and the specificity was 92.9%.

The proposed model in [40] was based on an X-ray image dataset and shows that
COVID-CAPS outperforms prior CNN-based models. COVID-CAPS attained an accuracy
of 95.7%, a sensitivity of 90%, and a specificity of 95.8% despite having a much lower
number of trainable parameters than other models.

In [41], from 400 chest X-ray images, individuals with COVID-19 symptoms were
identified using eight different deep learning techniques: VGG16, InceptionResNetV2,
ResNet50, DenseNet201, VGG19, MobilenetV2, NasNetMobile, and ResNet15V2. NasNet-
Mobile beat all other models in chest X-ray datasets, attaining an accuracy of 93.94%.

Seven different deep CNN models on a corpus of 50 controls and 25 COVID-19 patients
were evaluated by the authors in [42]. The VGG19 and DenseNet models produced the
greatest results, with F1 scores of 0.89 and 0.91 for controls and patients, respectively.

The authors of [43] utilized a database of 127 COVID-19, 500 controls, and 500 pneu-
monia patients collected from various sources for the binary classification of COVID-19 and
controls, as well as the multiclass classification of COVID-19, controls, and pneumonia. The
Darknet model was modified for transfer-learning and five-fold cross-validation, yielding
98% accuracy in binary classification and 87% accuracy in multiclass classification.

Although [44] presented an Xception transfer learning technique, it was restricted
to two multi-class classification tasks: (i) controls vs. COVID-19 vs. viral and bacterial
pneumonia; and (ii) controls vs. COVID-19 vs. pneumonia. To resolve the corpus imbalance,
an under-sampling technique was used to randomly remove registers from larger classes,
resulting in 290 COVID-19, 310 control, 330 bacterial pneumonia, and 327 viral pneumonia
chest X-ray images. The stated accuracy was 89% in the four-class scenario and 94% in the
three-class condition. Additionally, the accuracy was 90% in a three-class cross-database
experiment.

The suggested method in [45] employs a two-phase classification approach based
on 2088 (696 normal, 696 pneumonia, and 696 nCOVID-19) and 258 (86 pictures of each
category) chest Xray images, respectively. The validation test results obtained were as
follows: ACC = 91.329% and AUC = 0.831%.

Paper [46] utilized publicly accessible X-ray images (1583 normal, 4292 pneumonia,
and 225 verified COVID-19) to train deep learning (ConvNet) and machine learning
classifiers (SVM, LR, NB, DT, and KNN). Thirty-eight experiments used convolutional
neural networks (ConvNet), ten experiments used five machine learning models (SVM, LR,
NB, DT, and CNN), and fourteen experiments used state-of-the-art pre-trained networks
(VGG16, ResNet50, MobileNetV2, and DenseNet121) for transfer learning with eightfold
cross-validation. The average sensitivity was 93.84%, the average specificity was 99.18%,
and the average accuracy was 98.50%.

The dataset analyzed in [47] includes 1428 chest radiographs of patients with con-
firmed COVID-19 positivity, common bacterial pneumonia, and healthy individuals (no
infection). In this research, the network was successfully trained on relatively tiny chest
radiographs using the pre-trained VGG16 model for classification tasks. The trial demon-
strated a 96% and 92.5% accuracy rate for two classes (COVID and non-COVID) and three
output classes (COVID, non-COVID pneumonia, and normal), respectively.
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The article [48] details the procedure for training a Convolutional Neural Network,
Grad-CAM, using a dataset of over 79,500 X-ray pictures (controls, pneumonia, or COVID-19
groups) collected from various sources, including over 8500 COVID-19 examples. Three
distinct experiments are conducted using three distinct preprocessing methods in order to
assess and compare the generated models. The used technique achieves a classification
accuracy of 91.5% but needs preprocessing of the pictures for lung segmentation.

In [49], a benchmark X-ray data collection, dubbed QaTa-Cov19, was produced. It
contained about 6200 X-ray pictures. The data set contained 462 X-ray pictures of individu-
als diagnosed with COVID-19, as well as three other classifications: bacterial pneumonia,
viral pneumonia, and normal. The suggested CSEN-based classification method, which
incorporates feature extraction from a state-of-the-art deep neural network solution for X-
ray pictures, achieved a sensitivity of over 98% and a specificity of over 95% for COVID-19
detection.

The COVID-Net architecture was proposed in [50]. The model was trained using an
open resource called COVIDx, which included 13,975 X-ray pictures, despite the fact that
only 266 of 358 patients were classified as COVID-19. The accuracy achieved was 93.3%.

In [51] author suggests Decompose, Transfer, and Compose (DeTraC), for the diagnosis
of COVID-19 from chest X-ray images. The experiment employs an image dataset acquired
from many hospitals across the globe. DeTraC can address any anomalies in the image
dataset by exploring its class borders using a class decomposition method with an accuracy
of 93.1% in the identification of COVID-19 X-ray images from healthy individuals and
severe acute respiratory syndrome patients.

Another study [52] used a CNN based on capsule networks (CapsNet) for binary
classification (COVID-19 vs. control) and multi-class classification (COVID-19 vs. pneu-
monia vs. control). Experiments were conducted on a dataset of 1050 X-ray pictures of
COVID-19, 1050 pneumonia, and 1050 controls. The experiment obtained 97% accuracy
for binary classification and 84% accuracy for multi-class classification using a tenfold
cross-validation method.

The authors of [53] used transfer learning to develop a model for COVID-19 clas-
sification using the Xception network. Experiments were conducted on a database of
127 COVID-19, 500 controls, and 500 pneumonia cases collected from various sources, and
achieved an accuracy of about 97%.

The authors in [54] present a technique called multi-kernel depthwise convolution
(MD-Conv), which combines depthwise convolution kernels with varying filter widths
into a single depthwise convolution layer. The tests were conducted on the chest X-ray
dataset of 7470 individuals. MD-Conv had an AUC of 98.3% and an accuracy of 93.4% in
diagnosing juvenile pneumonia.

In [55], a novel CNN model was proposed in this study with end-to-end training. A
dataset containing 180 COVID-19 and 200 normal (healthy) chest X-ray images was used
in the study’s experimentation. A classification accuracy of 91.6% was achieved as the
performance measurement of the study.

An algorithm called BMO-CRNN using chest X-ray images was proposed in the
paper [56] as a smart COVID-19 diagnostic model that uses a barnacle mating optimization
(BMO) algorithm and a cascaded recurrent neural network (CRNN) model. This approach
uses a set of CRNN hyperparameters, such as learning rate, batch size, activation function
and epoch count to find the best possible values of these parameters. When it came time to
run simulations, it showed that the BMO-CRNN model had shown the ideal performance
of 97.01% sensitivity, an accuracy of 97.31%, and an F-value of 97.53%

The majority of the published research have utilized chest X-ray images to detect
COVID-19, emphasizing the value of chest X-ray image analysis as a reliable tool for
doctors and radiographers. Table 1 is an overview of the published research. However, it is
known that neural network models require a large amount of data in order to be trained
and tested. In the studies [35–37,39,41–47,49,51–53,55,56], researchers have worked with
a small number of chest X-ray data (75–6200 data) for training and testing purposes of
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COVID-19 detection and achieved varying accuracy (89.2–98%). However, due to the lack
of proper training of the models primarily because of using such limited datasets, the
credibility of the outcome is questionable. Furthermore, in the studies [38,40,48,50,54],
the models were trained on a large dataset (7470–79,500), which are considered reliable
but did not provide accuracies in high nineties, being mostly between 91.5–95.7%. The
studies also did not reflect on the compilation time of the implemented models, therefore
the most efficient model could not be confidently identified either. Detecting COVID-19
in patients requires not only a highly accurate method but a fast and reliable one as well.
To address this issue, a modified MobileNetV2 model is proposed that provides a higher
accuracy rate in the shortest time compared to any existing CNN models. To achieve a
large dataset for training and testing the model, 13,808 chest X-ray images of COVID-19
patients and healthy individuals were augmented to create a dataset of 52,000 images. To
further ensure the credibility of the outcome and the model, a Wilcoxon signed-rank test to
calculate p-value is performed.

Table 1. Overview of studies using deep learning approaches with their performance for COVID-19 case detection.

Reference Number of
Image Samples Classes Architectures Best Performing

Architecture Performance/Accuracy

[35] 1428 3 VGG19, MobileNetV2, Inception,
Xception, InceptionResNetV2 MobileNetV2 Acc = 96.78%

[36] 204 2 VGG16 + Resnet50 VGG16 + Resnet50 +
custom CNN Acc = 89.2%

[37] 100 2 ResNet50, InceptionV3 and
InceptionRes-NetV2 ResNet50 Acc = 98%

[38] 21,152 2 CNN CNN Acc = 94.64%

[39] 5184 2 ResNet18, ResNet50, SqueezeNet,
DenseNet-121 SqueezeNet Sensitivity = 98%,

Specificity = 92.9%

[40] 13,975 2 COVID-CAPS COVID-CAPS Acc = 95.7%,

[41] 400 2
VGG16, InceptionResNetV2, ResNet50,

DenseNet201, VGG19, MobilenetV2,
NasNetMobile, and ResNet15V2

NasNetMobile Acc = 93.94%

[42] 75 2
VGG19, Xception, ResNetV2,
DenseNet201, InceptionV3,

MobileNetV2, InceptionResNetV2
VGG19, DenseNet F1 scores = 0.91

[43] 1127 2 Modified Darknet Modified Darknet Acc = 98%

[44] 1257 3 Xception Xception Acc = 94%

[45] 2356 3 ACoS system ACoS Acc = 91.33%

[46] 6100 3 SVM, LR, nB, DT, and kNN + VGG16,
ResNet50, MobileNetV2, DenseNet121 Mean result Acc = 98.5%

[47] 1428 2 VGG16 VGG16 Acc = 96%

[48] 79,500 3 Grad-CAM Grad-CAM Acc = 91.5%

[49] 6200 4 CSEN-based classifier CSEN-based
Classifier

Sensitivity = 98%
Specificity = 95%

[50] 13,975 19 COVID-Net COVID-Net Acc = 93.3%

[51] 196 3 DeTrac Detrac Acc = 93.1%

[52] 3150 3 CapsNet CapsNet Acc = 97%

[53] 1127 3 Xception Xception Acc = 97%

[54] 7470 2 MD-Conv MD-Conv Acc = 93.4%

[55] 380 2 Novel CNN Model Novel CNN Model Acc = 91.6%

[56] 247 2 BMO-CRNN BMO-CRNN
Sensivity = 97.01%

Acc = 97.31%
F-value = 97.53%
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3. Proposed Method
3.1. Dataset Preparation

A chest X-ray database [57] was used to experiment with this study. This database
is currently one of the popular public X-ray databases, containing 3616 COVID-19 cases
along with 10,192 healthy, 6012 lung opacity and 1345 viral pneumonia images. However,
only COVID-19 (3616) and healthy (10,192) X-ray images were extracted for this study.
As a result, the dataset includes studies of COVID-19 and healthy individuals with a
matrix resolution of 299 × 299 (two X-ray examples are shown in Figure 1). EnsNet [58],
a system for scene-text removal, was used to remove annotations from certain images.
EnsNet is capable of automatically removing all of the text or annotation from an image
without any prior knowledge [59]. Data augmentation and image enhancement techniques
are performed to enhance the quantity and variety of images given to the classifier for
classification. Image augmentations used include horizontal flip, rotation, width shift and
height shift on all the extracted data from the original dataset. As chest X-ray images
are not vertically balanced, vertical flip was not applied. All augmentation parameters
are shown in Table 2. After image augmentation, the dataset was increased to a larger
dataset consisting of 26,000 COVID-19 and 26,000 healthy chest X-ray images. Besides,
image enhancement applied Histogram equalization, Spectrum, Grays and Cyan. The
N-CLAHE algorithm was then used to normalize pictures and highlight smaller features
for machine learning classifiers to notice. Thereafter, the images were scaled down to
the classifier’s standard resolution (for instance AlexNet was 256 × 256 pixels, whereas
GoogLeNet was 224 × 224 pixels). After resizing the picture, the machine learning classifier
used the enhanced (52,000) images in a ratio of 80% data for training, whereas 20% was
used for testing. Table 3 shows the details of the dataset.

Table 2. Parameters of data augmentation.

Augmentation Technique Range

Horizontal flip True
Rotation range 10

Width shift range 0.1
Height shift range 0.1

Vertical flip False

Table 3. Dataset Description.

Features Values

Total Number of Images 52,000
Disease Types 2

Dimension (Size in Pixel) Classifier’s Resolution (i.e., AlexNet is 256 × 256 pixels)
Color Grading Grays, Cyan, Spectrum

COVID-19 Images 26,000 (After Augmentation)
Healthy Images 26,000 (After Augmentation)
Training Images 41,600
Testing Images 10,400

3.2. Model Selection

One of the main goals of this research is to obtain appropriate classification results
utilizing freely available data (increased to high volume data by using enhancement
techniques) with the combined transfer learning models. This research was undertaken
to choose a CNN-based deep learning model that is appropriate for COVID-19 image
classification investigation. The primary aim is to propose a modified novel deep-learning-
based CNN model to gain the highest accuracy on a large volume of chest X-ray data with
minimal compilation time and compare the modified novel approach (accuracy, efficiency,
compilation time) with existing deep learning models on the same dataset. Figure 2 shows
the system diagram of the experiment.
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As a result, the focus was on models that are widely used, appropriate for transfer
learning, and easily available in packaged forms via trustworthy public libraries such as
Keras to identify the best suitable model for this study. Due to this, some basic models
are compared with the proposed novel model. These are all available as Keras API mod-
els [60], and all of these enable transfer learning by pre-applying the ImageNet weights
to the model.

1. VGG19 and VGG16

The Visual Geometry Group is abbreviated as VGG. VGG16 is built using multiple
33 kernel-sized filters sequentially (11 and 5 in the first and second convolutional layers,
respectively). VGG’s input is set to a 224 × 244 RGB picture. The VGG-19 convolutional
neural network was trained using over a million pictures from the ImageNet database.
The network has a depth of 19 layers and is capable of classifying images of multiple
classes. The VGG architectures’ primary concept is to keep the convolution size modest
and constant while designing an extremely deep network.

2. InceptionV3

InceptionV3 makes use of label smoothing, factorized 7 × 7 convolutions, and an
auxiliary classifier to transmit label information down the network, as well as batch
normalization for sidehead layers. It features smaller convolutions for quicker training
and lower grid size to overcome computational cost constraints. Numerous optimization
methods have been proposed for an InceptionV3 model in order to relax the restrictions and
facilitate model adaptability. Factorized convolutions, regularization, dimension reduction,
and parallelized calculations are all included in the methods.

3. ResNet50 and 101

ResNet50’s architecture is divided into 4 stages. The network may accept an input
image with a height, width of multiples of 32, and channel width. The network may accept
an input image with a height, width of multiples of 32, and channel width Each ResNet
architecture conducts initial convolution and max-pooling with a kernel size of 7 × 7 and
3 × 3, respectively. Each 2-layer block is replaced with this 3-layer bottleneck block in
the 34-layer net, resulting in a 50-layer ResNet. A 101-layer ResNet is created by adding
additional 3-layer blocks.

4. GoogLeNet

GoogLeNet is a deep convolutional neural network with 22 layers and almost 12×
fewer parameters compared to Inception architecture. However, by adding more layers,
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the number of parameters grows, and the network may overfit. The pre-trained network
accepts images with a resolution of 224 × 224. In GoogLeNet, global average pooling
was utilized instead of a fully linked layer. The architecture makes use of the Activation,
AveragePooling2D, and Dense layers.
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5. MobileNetV2

MobileNetV2 introduces a new module with an inverted residual structure. With
MobileNetV2, state-of-the-art object recognition and semantic segmentation are accom-
plished. MobileNetV2’s architecture begins with a fully convolutional layer with 32 filters
and 19 residual bottleneck layers. Typically, the network requires 300 million multiply-add
operations and utilizes 3.4 million parameters. Accuracy is increased by removing ReLU6
from the output of each bottleneck module.

6. AlexNet

AlexNet is made up of 5 convolutional layers, 3 max-pooling layers, 2 normalization
layers, 2 fully connected layers, and 1 softmax layer. Each convolutional layer is composed
of convolutional filters and a ReLU nonlinear activation function. Max pooling is accom-
plished using the pooling layers. Due to the existence of completely linked layers, the
input size 224 × 224 × 3 is fixed. If the input picture is grayscale, it is converted to RGB
by duplicating the single channel to create a three-channel RGB image. AlexNet’s total
parameter count is 60 million, with a batch size of 128.

7. EfficientNet B7

To enhance performance, a new baseline network was created using the AutoML
MNAS framework, which improves both accuracy and efficiency (FLOPS). The resultant
architecture is comparable to MobileNetV2 and MnasNet in that it utilizes mobile inverted
bottleneck convolution (MBConv), but is somewhat bigger owing to an increased FLOP
budget. The basic network is then scaled up to create a family of models called EfficientNets.
EfficientNetB7 does not include any pre-trained weights.

8. DenseNet 121

Each layer in a DenseNet design is directly linked to every other layer, resulting in the
term Densely Connected Convolutional Network. There are L(L + 1)/2 direct connections
between ‘L’ levels. The feature maps from previous layers are not averaged, but concate-
nated and utilized as inputs in each layer. As a result, DenseNets need fewer parameters
than a comparable conventional CNN, which enables feature reuse by discarding duplicate
feature maps. Dense Blocks, in which the size of the feature maps stays constant inside a
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block but the number of filters varies. These layers in between are referred to as Transition
Layers and are responsible for downsampling the image by using batch normalization,
1 × 1 convolution, and 2 × 2 pooling layers.

9. NFNet

NFNets is an abbreviation for Normalizer-Free Networks. NFNets are a subclass of
modified ResNets that achieve competitive accuracy in the absence of batch normalization.
NFNets scales the activations at the start and end of the residual branch using two scalers
(α and β). Scaled Weight Standardization is used in NFNets to prevent mean shift. Addi-
tionally, Adaptive Gradient Clipping was used to train NFNets with larger batch sizes and
learning rates.

10. Modified MobileNetV2 (Novel Approach)

Modified MobileNetV2 is likewise a design suited for mobile as well as computer
vision like MobileNetV2. To assist with computer vision, deep learning techniques are
now being utilized in other areas including robotics, the Internet of Things (IoT), and
Natural Language Processing. The modified MobileNetV2 model, as well as the CNN
layers, are used to predict and categorize diseases in chest X-ray images in this study. The
modified MobileNetV2 architecture includes a set of hidden layers based on a bottleneck
residual block, as well as a depth-wise separable convolution that significantly lowers the
number of parameters and results in a lightweight neural network that differs from typical
convolution. The standard convolution is substituted with a depth-wise convolution with a
single filter, followed by a depth-wise severable convolution with a pointwise convolution.

3.3. Modified MobileNet V2 Architecture

The modified MobileNetV2 that has been proposed is not only compact in size but
also computationally efficient, leading to enhanced performance on both large and small
data sets.

Seven convolutional layers formed the bulk of the bottleneck residual block in the
modified model. The final two layers that were previously included in the initial generation
of MobileNet: a depth-wise convolution filtering the inputs and a 1 × 1 pointwise convo-
lution layer. Though, this layer 1 × 1 role has shifted. The main concept is to use 3 × 3
depth-separable convolution filters followed by 1 × 1 subsequent convolution filters in-
stead of the usual 3 × 3. The new design uses fewer operations and parameters to achieve
the same filtering and combining process as traditional convolution. In MobileNetV1,
the pointwise convolution had to either double or maintain the number of channels. In
MobileNetV2, pointwise convolution has the opposite effect: it decreases the number of
available channels. The first new feature was introduced by the expansion layer. The
expansion layer is a 1 × 1 convolution. Its function is to increase the number of channels in
the image data before proceeding to depth-wise convolution. As a result, since it performs
the reverse of the projection layer, this expansion layer always has more output channels
than input channels. Table 4 shows the architecture of modified MobileNetV2.

The residual connection described in Algorithm 1 is a novel feature in the model
building block. An expansion factor t is applied to the feature channels. For testing,
modified MobileNetV2 with an input size of 224 × 224 was utilized. Modify the second
convolution layer with kernel size (2, 2). At the first residual block, use stride 0.5 rather
than 1. In the fifth residual block, use stride 2 rather than 1. RMSprop optimizer is added
in the third convolution layer.
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Table 4. Layers of modified MobileNetV2 Architecture.

Input Operator t c n s

224 × 224 × 3 Con 2d 1 32 1 2
224 × 224 × 3

Average pool (3, 3) bottleneck 3 16 1 1

128 × 128 × 3
Average pool (3, 3) bottleneck 3 24 1 2

128 × 128 × 3
Maxpool (2, 2) bottleneck 3 32 2 2

128 × 128 × 3
Maxpool (1, 1) bottleneck 3 64 2 1

64 × 64 × 3
Maxpool (1, 1) bottleneck 3 96 1 2

64 × 64 × 3 bottleneck 3 160 1 1
64 × 64 × 3 bottleneck 3 320 1 2
56 × 56 × 3 Con 2d - k - -

Algorithm 1: Proposed Modified MobileNetV2 Algorithm for COVID-19 Detection

Input: 52,000 chest X-ray images. (80% train, 20% test data)
Output: Result = COVID-19 positive or healthy
Step 1: batch normalization, preprocessing, augmentation
Step 2: Freeze the base layer and add proposed convolution layer with image size

224, kernel size (3, 3), optimizer = RMSprop, activation: ReLU
Step 3: Feed the first residual convolution layer with kernel size (2, 2), activation =

ReLU, then average pooling, optimizer = RMSprop
Step 4: Feed into the second residual convolution layer with kernel size (1, 1), stride = 2.

Average pooling, dropout, optimizer = none
Step 5: Feed into the third residual convolution layer with kernel size (2, 2), stride = 1.

Max pooling, dropout, optimizer = RMSprop
Step 6: Feed into the fourth and fifth residual convolution layer with kernel size (1, 1),

stride = 2. Max pooling, dropout, optimizer = none
Step 7: Feed into sixth residual convolution layer with kernel size (2, 2), stride = 2, no

pooling, dropout, optimizer = RMSprop
Step 8: Feed into seventh residual convolution layer with kernel size (2, 2), stride = 1,

average pooling, dropout, optimizer = RMSprop
Step 9: Apply proposed layer with image size 224 × 224, kernel size (3, 3), optimizer =

RMSprop, activation: ReLu
Step 10: Finding the accuracy, precision, f1 score, recall

The algorithm takes 52,000 chest X-ray images as its input and splits the dataset to
80% as training data and 20% as test data. The outcome obtained is the classification of the
data as either COVID-19 positive or healthy.

At first, batch normalization, preprocessing and augmentation are applied to the
dataset. The base layer is then frozen, and the proposed convolution layer with image
size 224 × 224 pixel is added. Here, RMSprop optimizer and ReLU activation function are
also used. The first residual convolution is fed with kernel size of (2, 2), ReLU activation
function, average pooling and RMSprop optimizer. The second residual convolution layer
is fed with kernel size of (1, 1), stride = 2, average pooling, dropout to handle overfitting
but no optimizer. In the third residual convolution layer, kernel size of (2, 2), stride = 1, max
pooling, dropout along with RMSprop optimizer is fed. Both the fourth and fifth residual
convolution layer is fed with kernel size of (1, 1), stride = 2, max pooling, dropout to handle
overfitting but no optimizer. No pooling function is fed into the sixth residual convolution
layer but kernel size of (2, 2), stride = 2, dropout along with RMSprop optimizer was fed.
The final residual convolution layer feeds on a kernel size of (2, 2), stride = 1, average
pooling, dropout along with RMSprop optimizer. Next, the proposed layer is applied
on images of 224 × 224 pixels with a kernel size of (3, 3), RMSprop optimizer and ReLU
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activation function. The final step of the algorithm is to find the accuracy, precision, f1
score, and recall of the outcome.

3.4. Model Implementation

A pre-trained network has been previously trained on a bigger dataset, which is
usually adequate to develop a unique hierarchy from which features may be extracted. On
tiny datasets, it performs better. Simoyan and Zisserman (2014) [61] created the VGG16
architecture, which is a prime example. The models used and described in the previous
section are available as pre-packaged within Keras except for the novel approach. All
models are firstly tuned using Keras-tune to determine the optimal hyperparameter ranges.
The grid search approach is used, which is a popular method for parameter tuning. Initially
picked the following at random:

Batch size = (50, 100, 150, 200, 250, 300)
Number of epochs = (100, 150, 200, 250, 300, 350, 400)
Learning rate = (0.0000001, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1)
Optimizer = (‘SGD’, ‘Adadelta’, ‘RMSprop’, ‘Adagrad’, ‘Adam’, ‘Nadam’, ‘Adamax’)

And below mentioned parameters are selected manually for all deep learning models

Hidden layer size = 8–96 neurons
Dropout = 0.1
Activation = (‘ReLU’ (hidden), ‘Sigmoid’ (final))
Kernel Size = 2 × 2

Furthermore, the value of parameters using the grid search method for all deep
learning models was achieved. The overall data of parameters post tuning is shown
in Table 5. Only in the novel method (modified MobileNetV2) applied all optimizers
(‘SGD’, ‘Adadelta’, ‘RMSprop’, ‘Adagrad’, ‘Adam’, ‘Nadam’, ‘Adamax’) and picked the
one (‘RMSprop’) that provides the highest accuracy.

Table 5. Model final parameters.

Model Batch Size Number of
Epochs

Hidden
Layer Size Dropout Learning

Rate Activation Optimizer Kernel Size

VGG16 150 200 8–96 neurons 0.1 0.00001 ReLu sigmoid Adam 2 × 2
VGG19 150 200 8–96 neurons 0.1 0. 0001 ReLu sigmoid RMSprop 2 × 2

InceptionV3 200 300 8–96 neurons 0.1 0.0001 ReLu sigmoid Nadam 2 × 2
ResNet50 100 200 8–96 neurons 0.1 0.001 ReLu sigmoid Adamax 2 × 2
ResNet101 250 300 8–96 neurons 0.1 0.0001 ReLu sigmoid Adam 2 × 2
GoogLeNet 50 150 8–96 neurons 0.1 0.0001 ReLu sigmoid SGD 2 × 2

MobileNetV2 250 300 8–96 neurons 0.1 0.01 ReLu sigmoid RMSprop 2 × 2
AlexNet 100 150 8–96 neurons 0.1 0.00001 ReLu sigmoid Adadelta 2 × 2

EfficientNet B7 200 300 8–96 neurons 0.1 0.000001 ReLu sigmoid Adamax 2 × 2
DenseNet121 200 350 8–96 neurons 0.1 0.00001 ReLu sigmoid Adagrad 2 × 2

NFNet 150 250 8–96 neurons 0.1 0.0001 ReLu sigmoid Adadelta 2 × 2
Modified

MobileNetV2
(Proposed
Method)

300 400 8–96 neurons 0.1 0.0000001 ReLu RMSprop 2 × 2

For further analysis, every model was trained multiple times over a period of 150–400 epochs
with precision, recall, f1 score, accuracy (training/testing) metrics, as well as training curves
and confusion matrices, recorded.

The experiment was performed with learning rates ranging from 0.1 to 0.0000001,
and the hidden layer size was changed from 8 to 96 neurons, as well as the learning rate.
The batch size varied between 50 and 300. ImageNet weights were used to train each
classifier. To avoid overfitting, the number of dropout sections was adjusted. For enhanced
performance, all eleven models except the novel model epochs, optimizers, batch size and
learning rate were chosen using grid search. Repeated training and testing were done with
the chosen epochs and adjusted parameters to obtain performance scores. After that, the
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training and testing were performed with a different epoch and optimized hyperparameters
in order to get performance scores.

According to the testing outcomes exhibited in Table 6, the novel method modified
MobileNetV2 was more trainable on image classes (COVID-19, healthy) and provided
more reliable highest results when compared to the other models.

Table 6. Model performance summary.

Model Image Mode & Training
Records Testing F1 Score

VGG16
X-ray

No overfitting evident
(dropout Apply)

0.87

VGG19
X-ray

No overfitting evident
(dropout Apply)

0.88

InceptionV3
X-ray

No overfitting evident
(dropout Apply)

0.91

ResNet50
X-ray

No overfitting evident
(dropout Apply)

0.82

ResNet101
X-ray

No overfitting evident
(dropout Apply)

0.93

GoogLeNet
X-ray

No overfitting evident
(dropout Apply)

0.90

MobileNetV2
X-ray

No overfitting evident
(dropout Apply)

0.95

AlexNet
X-ray

No overfitting evident
(dropout Apply)

0.87

EfficientNetB7
X-ray

No overfitting evident
(dropout Apply)

0.92

DenseNet121
X-ray

No overfitting evident
(dropout Apply)

0.94

NFNet
X-ray

No overfitting evident
(dropout Apply)

0.92

Modified MobileNetV2
(Proposed Method)

X-ray
No overfitting evident

(dropout Apply)
0.98

3.5. Performance Evaluation Matrix

A confusion matrix was used to show the performance results [62]. The matrix is
composed of the following elements:

True-positive (TP): refers to instances of COVID-19 that have been correctly classified.
False-positive (FP): refers to instances of COVID-19 that were erroneously classed as healthy.
True-negative (TN): refers to instances that are correctly classified as healthy.
False-negative (FN): refers to instances of COVID-19 that were erroneously categorized
as healthy.
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Using the elements of the matrix, model accuracy, precision, recall, F1 score, negative
predicted values, and specificity are measured. In Equation (1), accuracy is the ratio of
correctly identified COVID-19 and healthy cases from all samples.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

In Equation (2), precision or positive predicted value (PPV) is the ratio of correctly
identified COVID-19 cases from all samples classified as COVID-19.

Precision =
TP

TP + FP
(2)

In Equation (3), sensitivity or recall is the ratio of correctly identified COVID-19 cases
from the sum correctly identified COVID-19 and incorrectly classified COVID-19 cases as
healthy, i.e., all the original COVID-19 samples.

Recall =
TP

TP + FN
(3)

In Equation (4), F1 score is the overall measure of the accuracy of the model using
precision and recall.

F1 − Score = 2
(

Precision × Recall
Precision + Recall

)
(4)

In Equation (5), negative predicted value (NPV) is the ratio of correctly identified
healthy cases from all samples classified as healthy.

NPV =
TN

TN + FN
(5)

In Equation (6), specificity is the ratio of correctly identified healthy cases from the
sum correctly identified healthy and incorrectly classified healthy cases as COVID-19, i.e.,
all the original healthy samples.

Specificity =
TN

TN + FP
(6)

Finally, to evaluate the validity and reliability of the findings, a statistical test of
significance is done using a Wilcoxon signed–rank test (two-tailed). In this test, the p-value
is determined to evaluate the statistical significance.

4. Results
4.1. Experiment Setup

All the experiments were performed on AMD Ryzen 7 3800 × 3.90 GHz 8 (32 MB
L3 cache, memory speed = 3200 MHz) cores 16 threads processor with 64 GB of RAM
and Anaconda 3 software environment. It is loaded with a GPU from the MD Radeon RX
580 series. Following many evaluations of eleven different models, the novel approach
modified MobileNetV2 model was chosen as the best model with the highest accuracy.
Modified MobileNetV2 took almost 5 days for training with this setup. The results were
derived using Python and OpenCV. Scikit-learn and NumPy were used to test the model.

4.2. Experiment Outcome

The suggested study used pre-trained CNN models and compared their performance
to a new modified MobileNetV2 technique in order to get the highest performance for
COVID-19 identification from 52,000 (26,000 COVID-19 and 26,000 healthy) chest X-ray im-
ages. Along with the proposed modified MobileNetV2, the VGG16, VGG19, MobileNetV2,
ReseNet101, InceptionV3, ResNet50, GoogLeNet, AlexNet, EfficientNetB7, DenseNet and
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NFNet deep models were assessed in terms of performance and compilation time, since
the purpose of the study is to find the most optimal model. Each model was fine-tuned and
used epochs (100–400) and optimizers (suggest by grid search) to optimize the loss function
with a learning rate of 0.000001, and the top 10 epochs were recorded and assessed. Before
images were inputted into the neural network, they were downsampled to the optimal
size for the models i.e., 256 × 256 for AlexNet. While 80% of the data was set aside for
training, the remaining 20% was set aside for testing. In Figure 3, a sample of COVID-19
and healthy chest X-ray image data are presented. These refined data were fed into the
CNN models for better accuracy of classification.
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To begin with, the default validation set of 10% of the training set has been used.
The accuracy and loss values acquired for the training and validation processes from the
models were applied to the dataset. The classification training and validation accuracy
scores were utilized to evaluate the performance of the models, and Figure 4 shows the
resulting accuracy scores for the 10 recorded epochs. The modified MobileNetV2 proposed
in the research achieved the highest accuracy for training and validation at 97% and 98%,
respectively, followed by the pre-trained model, MobileNetV2. The MobileNetV2 model
accuracy, when applied to the dataset, is 96% for the training set and 97% for the validation
set. The VGG19 and ResNet101 models both achieved an identical test accuracy of 95%.
Likewise, InceptionV3, NFNet, GoogLeNet, and DenseNet models all achieved a similar
accuracy of 94%. The remaining models, EfficientNetB7, AlexNet, VGG16, and ResNet50,
have a 92%, 91%, 91%, and 84% accuracy, respectively.

A model’s loss value indicates how well or badly it performs after each iteration,
depending on the model. Less loss means higher performance, unless a model has been
over-fitted to its training data. The loss experienced by the models throughout the training
and testing processes is shown and quantified in Figure 5. On average, the rate of loss
decreased as the number of epochs increased. The average loss varied significantly across
models. However, the suggested modified MobileNetV2 model results in the smallest loss
of 0.0039%. MobileNetV2 has the second-lowest loss rate at 4% and 3% for the training and
validation sets, respectively. The most significant loss is seen in GoogLeNet, Dense-Net,
and AlexNet. The GoogLeNet has a loss rate of 23% and 20% for the training and validation
datasets, respectively. AlexNet demonstrates losses of 23% and 31% from training and
validation data, respectively. DenseNet exhibits a loss rate of 33% and 20% from the training
and validation sets, respectively.
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Figure 4. Training and validation accuracy of the models.

The confusion matrix for the models is shown in Figure 6 to aid in visualizing their
overall performance. The test dataset contains 10,400 data samples, 5200 of which are
COVID-19 samples and 5200 of which are healthy samples. COVID-19 and healthy in-
stances are denoted by the labels ‘1’ and ‘0’, respectively. From the matrix, modified
MobileNetV2 can successfully identify 5065 healthy samples and 5127 COVID-19 samples.
In total, the model could accurately identify a total of 10,192 (98%) data samples from the
test set. Similarly, MobileNetV2 models could accurately identify 5086 COVID-19 samples
and 5002 healthy cases, amounting to 97% accuracy.
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Figure 5. Loss in training and validation of the models.

The confusion matrix in the Figure 6 was used to calculate the values of the labels TP,
TN, FP, and FN. The accuracy, precision, recall, and F1 score of the models were determined
using the values in Equations (1)–(6). The computed values for the performance metrics
are shown in Table 7. As shown in the table, the modified MobileNetV2 has the best overall
performance with a precision score of 97%, a recall score of 98%, a specificity score of 97%,
NPV score of 98% and an F1 score of 97%.
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Table 7. Model performance summary.

Model Sensitivity/Recall Precision/PPV Accuracy NPV Specificity F1 Score

Modified
MobileNetV2 98% 97% 98% 98% 97% 97%

MobileNetV2 97% 96% 97% 97% 96% 96%
VGG19 95% 94% 95% 95% 93% 94%

ResNet101 96% 93% 95% 96% 93% 94%
InceptionV3 95% 92% 94% 95% 92% 93%

NFNET 94% 94% 94% 93% 93% 94%
GoogLeNet 94% 93% 94% 94% 93% 93%

DenseNet121 92% 96% 94% 91% 96% 93%
EfficientNetB7 93% 90% 92% 93% 90% 91%

AlexNet 95% 87% 91% 95% 97% 90%
VGG16 93% 89% 91% 93% 98% 90%

ResNet50 87% 81% 84% 86% 80% 83%
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Additionally, the compilation time is evaluated for the implemented models. Note
that, high accuracy accompanied by low completion time makes a model more efficient.
Table 8 shows the compilation time for each of the models for each epoch in seconds
and a total compilation time in hours (h), minutes (min) and seconds (s). The final time
was acquired by multiplying the time per epoch and epoch of each model. From the
table, it is observed that the EfficientNetB7 model performs very poorly and has the
highest completion time compared to the rest of the 11 models with 6 h, 45 min and 47 s.
MobileNetv2 also has a comparatively higher compilation time than most of the models,
even though the compilation time of each epoch is much lower. This is because the total
epoch needed by the model to give the best prediction is comparatively high. Finally, it can
be understood from the table that the proposed modified MobileNetV2 not only has the
lowest compilation time with 2 h, 50 min and 21 s, but also the lowest total completion time
even with the highest number of epochs (Table 5). That means the modified MobileNetV2
model gives the most optimal prediction result with the highest accuracy and lowest
compilation time.

Table 8. Compilation time of the models.

Model Compilation Time

VGG19 5 h 18 min 14 s
VGG16 6 h 27 min 7 s

MobileNetV2 5 h 42 min 34 s
InceptionV3 7 h 6 min 41 s

ResNet50 6 h 1 min 22 s
AlexNet 4 h 54 min 3 s
google 4 h 57 min 52 s

ResNet101 6 h 18 min 18 s
EfficientNetB7 6 h 45 min 47 s

DenseNet 6 h 42 min 35 s
NFNET 6 h 24 min 26 s

Modified mobilenetv2 2 h 50 min 21 s

It is observed from the performance measure comparison that the suggested modified
MobileNetV2 model shows superior performance compared to the pre-trained CNN mod-
els. The model successfully can identify and tell apart COVID-19 and healthy chest X-ray
images. In Figure 7, a heat map is presented that shows the classification process of the
suggested model at each level of its architecture.
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In Table 9, the performance measures of the modified MobileNetV2 are illustrated in
detail. It shows the rate of performance scores in both the training and validation phase
of the model. Overall, the training performance and testing performance show very high
scores with 96% and 97% F1-scores.

Table 9. Modified MobileNetV2 model performance on training and validation set.

Modified
MobileNetV2

Sensitivity/
Recall

Precision/
PPV Accuracy NPV Specificity F1 Score

Train 97% 96% 97% 97% 96% 96%
Validation 98% 97% 98% 98% 97% 97%

A statistical test of significance was performed to validate the reliability of the findings
to ascertain that the outcome did not occur by chance. To achieve so, the study followed
the Wilcoxon signed-rank test and calculated p-value(s) among all models. The Wilcoxon
signed-rank test is generally preferred as a non-parametric comparison between two
samples [63]. This test is applied to compare two independent samples to perform a paired
difference test of repeated measurements on a single sample. Subsequently, the result
shows whether their population mean ranks differ or not. Table 10 depicts the results
of the p-value for pair-wise comparison among the models. It is observed that modified
MobileNet2 showed better performance than the rest of the models. To explain, the p-value
between modified MobileNetV2 and MobileNetV2 is 0.01–0.001 (less than 0.05), which
indicates that modified MobileNetV2 performed superiorly compared to MobileNet2, and
the result is statistically significant.

Table 10. Wilcoxon signed-rank test (two-tailed).

No. Pairwise Model Comparison p Value Significance < 0.05

1 Modified MobileNetV2 versus VGG16 0.0001 Yes
2 Modified MobileNetV2 versus VGG19 0.0117 Yes
3 Modified MobileNetV2 versus InceptionV3 0.0001 Yes
4 Modified MobileNetV2 versus ResNet50 0.0001 Yes
5 Modified MobileNetV2 versus ResNet101 0.0030 Yes
6 Modified MobileNetV2 versus GoogLeNet 0.0001 Yes
7 Modified MobileNetV2 versus MobileNetV2 0.0028 Yes
8 Modified MobileNetV2 versus AlexNet 0.0001 Yes
9 Modified MobileNetV2 versus EfficientNetB7 0.0001 Yes

10 Modified MobileNetV2 versus DenseNet121 0.0068 Yes
11 Modified MobileNetV2 versus NFNet 0.0023 Yes

5. Conclusions

The chest X-ray images (COVID-19, healthy) were mostly applied to analyze lung
problems. The study attempts to understand the specific strengths and weaknesses of
common deep learning models in order to identify COVID-19 with acceptable accuracy.
This is critical for a doctor’s decision-making, since each has benefits and drawbacks.
Furthermore, when time, resources, and the patient’s condition are restricted, the doctor
may be forced to make a choice based on only one modality. In this work, deep learning
techniques were used for automatic COVID-19 detection from chest X-ray images. For this,
twelve different models were implemented. Among them, eleven models are existing CNN
models while the last one is modified MobileNetV2, a novel approach suggested in the
study for more accurate classification with the least compilation time. In this study, authors
have shown that the existing methods, when trained and tested on a large dataset, are
outperformance by the proposed modified model in COVID-19 detection. The classification
accuracy of the modified MobileNetV2 model is 98% in 2 h 50 min 21 s. The precision, recall,
sensitivity, and F1 score of the model are 97%, 98%, 97% and 97%, respectively. Compared
to the proposed model, the highest performance achieved by the existing models is from
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MobileNetV2. The existing MobileNetV2 model has an accuracy of 97% in classifying
COVID-19 and healthy chest X-rays in 5 h 42 min 34 s. The precision, recall, sensitivity, and
F1 score of this model are 96%, 97%, 96% and 96%, respectively. Furthermore, the Wilcoxon
signed-rank test done in the study confirms the validity of the findings. These findings will
assist doctors in choosing suitable models for various image analysis methods, which will
be important when time and resources are limited in a pandemic scenario like the present
COVID-19. As future work, the proposed method could be implemented on a dataset
with more classes of pulmonary diseases such as asthma, chronic obstructive pulmonary
disease, pulmonary fibrosis, pneumonia, lung cancer and COVID-19. Additionally, from
the literature review, it was observed that there is a lack of proper feature extraction
processes from image data. Therefore, a feature extraction technique will also be included
in future work.
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